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1. Introduction 

 

The concept of s-geometrically functions was introduced in [6, Definition 1.9]. 

Definition 1 ([6, Definition 1.9]). A function : (0, )f I + +⊆ = ∞ →R R  is said to 
be an s-geometrically convex function for some ],1,0(∈s if the inequality 

ss tttt yfxfyxf )1(1 )]([)]([)( −− ≤  
holds for all Iyx ∈,  and ].1,0[∈t  

Remark 1. Let ]1,0(∈s and let :f I + +⊆ →R R be an s-geometrically convex 
function. 

(1) ,1 If =s  the s-geometrically convex function becomes a geometrically 
convex function on +R . 

(2) . allfor   validis 1)(then ,1,0 If Ixxfs ∈≥∈ ）（  

  In the paper [3], an integral identity was created as follows. 
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Lemma 1 ([3,Lemma 1]). Let I ⊆ R  and let :f I → R  be differentiable on I  
such that ]),,([1 baLf ∈′ where  , Iba ∈ with  . ba < Then 
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In view of Lemma 1, the authors of the paper [2] established the following 
Hermite-Hadamard type inequalities for s-geometrically convex functions. 
Theorem 1 ([2, Theorems 2.2 and 2.4]). Let :f I +⊆ →R R  be a differentiable 

mapping on I  such that ( )  ,],[1 baLf ∈′  where Iba ∈,  with .ba <  If ( ) qf x′  
is s-geometrically convex and decreasing on ],[ ba  for ]1,0(∈s  and ,1≥q  then  
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Theorem 2 ([2, Theorem 2.3]). Let :f I +⊆ →R R  be a differentiable mapping 

on I  such that ( )  ,],[1 baLf ∈′  where Iba ∈,  with .ba <  If ( ) 
qf x′  is s-

geometrically convex and decreasing on ],[ ba  for ]1,0(∈s  and 1>q  with 

,111
=+

pq
 then  

1/ 1/1/1

3 41
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Remark  2.  Under the conditions of Theorems 1 and 2, 

(1) if 1=q , Theorem 1 is just [2, Theorem 2.2]; 
(2) if 1>q , Theorem 1 is equivalent to [2, Theorem 2.4]; 

(3) for 0>a , the relations ( )  
a

hah 





=

1
12 and ( )  

a
hah 






=

1
34 are valid; 

We claim that there existed heavy errors and serious mistakes not only in 
Theorems 1 and 2 but also in other propositions in the paper [2]. 

In this paper, we will correct, as done in the papers [4, 5], those heavy errors and 
serious mistakes appeared in Theorems 1 and 2 and other propositions in the paper 
[2], by establishing several new integral inequalities of the Hermite-Hadamard type 
for s-geometrically convex functions. 
 
 
 
2.  Corrected versions of Theorems 1 and 2 in the paper [2] 
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Now we start out to correct the errors and mistakes in Theorems 1 and 2 by 

establishing several new integral inequalities of the Hermite-Hadamard type for s-
geometrically convex functions. 

 
Theorem 3 (Corrected version of Theorem 1).  Let :f I +⊆ →R R  be a 

differentiable mapping on I , let Iba ∈,  with ba < , and let ( ).],[1 baLf ∈′  If 

( ) 
qf x′  is s-geometrically convex and decreasing on ],[ ba  for 1≥q  and 
]1,0(∈s , then         
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where ( ) ( )   , 1 aa handvu are defined as in Theorem 1. 
Proof. From Lemma 1 and Hölder’s integral inequality, we obtain 
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Let ηµ ≤≤< 10 and .1,0 ≤< t s  Then it was deduced in [1, p.4] that 

                                       stt s

µµ ≤    and      .1 sstt s −+≤ηη                                 (3) 

Considering the condition that qf ′ is decreasing and s-geometrically convex on 
],[ ba  and making use of the inequalities in (3) yield 
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Substituting the inequalities (4) and (5) into the inequality (2) and simplifying 
result in the inequality (1). Theorem 3 is thus proved. 
 
Corollary 1.  Under the conditions of Theorem  3, if q=1, then 
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where ( ) ( ) h and vu aa 1, are defined as in Theorem 1. 
Corollary 2.  Under the conditions of Theorem  3, if s=1, then 
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where ( ) ( ) h and vu aa 1, are defined as in Theorem 1. 
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By virtue of the same ideas and approaches as in the proof of Theorem 3, we can 
find out the following results. 

 
Theorem 4 (Corrected version of Theorem 2). Let :f I +⊆ →R R  be a 

differentiable mapping on I  such that ( )  ,],[1 baLf ∈′  where Iba ∈,  with 

.ba <  If ( ) 
qf x′  is s-geometrically convex and decreasing on ],[ ba  for 
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where the function ( )  , vua is defined as in Theorem 1 and the function ( )a3h is 
defined as in Theorem 2.  
Corollary 3.  Under the conditions of  Theorem  3, if s=1, then 
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where the function ( )  vu ,a is defined as in Theorem 1 and the function ( )a3h is 
defined as in Theorem 2.  
 
 
 
 
3.  Corrected versions of three propositions in the paper [2] 
 

In this section, we will apply several integral inequalities of the Hermite-
Hadamard type for s-geometrically convex functions to construct some inequalities 
for means. 

For two positive numbers 0>a and ,0>b define 
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and 
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the generalized logarithmic mean of two positive number .0and0 >> b  a  

Let 
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Proof. Using Lemma 1, we obtain 
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Theorem 5 is thus proved. 
Corollary 4. Let 10 ≤<< ba  and  10 << s . Then 
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Proof. By the inequality (7) and the geometric-arithmetic mean inequality, we have  
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Corollary 4 is thus proved. 
Under the conditions of Theorem 5, from the inequalities (6) and (7), it follows 

that 
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Therefore, we can correct [2, Propositions 3.1, 3.2, and 3.2] as follows. 
Corollary 5 (Corrected version of [2, Propositions 3.1 and 3.3]). Let 10 ≤<< ba ,     
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